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Longevity risk management.

o Cast the famous Lee-Carter model and Cairns-Blake-Dowd
Model in a Bayesian (non-linear) state-space form under the
Poisson/Binomial Error structure.

@ Application of the backtesting approach to compare whether
the Poisson/Binomial Error structure provides a better tool for
mortality modeling than the linear state-space form.
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@ Life annuity, deferred annuity, and variable annuity are all
products that hinges on longevity risk.

@ Recently longevity risk has been exacerbated by consistent
mis-estimation of predicted mortality rates and life expectancy

@ Bayesian Linear mortality models have been used extensively
in literature as a means to provide better fit but there is an
issue!

@ Can we create a framework which determines whether a
model is " good enough” to capture longevity risk? More
specifically, managing longevity risk?
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P(Data|Hg) or P(Hp|Data). (1)

Indirect inference on the alternative as the p-value is
conditional on the Null.

@ Under a Bayesian Hypothesis Testing, we are aiming to find
Pr(Ho|Data)

Transparency under Bayesian Hypothesis Testing

5/22



Introduction

Background
Motivation

The Bayesian Backtesting Framework

@ Our new backtesting framework tries to combine both the
area of Bayesian Hypothesis testing, and the Kupiec's
Unconditional Coverage test. (Bayesian is used as an
alternative means to Frequentist testing).

6/22



Introduction

Background
Motivation

The Bayesian Backtesting Framework

@ Our new backtesting framework tries to combine both the
area of Bayesian Hypothesis testing, and the Kupiec's
Unconditional Coverage test. (Bayesian is used as an
alternative means to Frequentist testing).

e First approach is using the Bayes Factor (Bo1)

6/22



Introduction

Background
Motivation

The Bayesian Backtesting Framework

@ Our new backtesting framework tries to combine both the
area of Bayesian Hypothesis testing, and the Kupiec's
Unconditional Coverage test. (Bayesian is used as an
alternative means to Frequentist testing).

e First approach is using the Bayes Factor (Bo1)

@ Second approach is using the Bayesian Likelihood Ratio test.
(BLRTo3)

6/22



Introduction

Background
Motivation

The Bayesian Backtesting Framework

@ Our new backtesting framework tries to combine both the
area of Bayesian Hypothesis testing, and the Kupiec's
Unconditional Coverage test. (Bayesian is used as an
alternative means to Frequentist testing).

First approach is using the Bayes Factor (Bo1)

Second approach is using the Bayesian Likelihood Ratio test.
(BLRTo3)

Test for robustness using varying hyper-parameters.
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Motivation

Bayesian Mortality Model

@ Introduce the two most commonly used mortality models,
Lee-Carter (Lee and Carter, 1992), and the Cairns Blake
Dowd (CBD) model (Cairns et al., 2006).

@ Casting Lee-Carter and CBD model in State-Space form.

@ 2 Estimation methods, Bayesian Non-linear State-Space
model, and the Bayesian linear State-Space method under
Gaussian error (see Fung et al. (2015); Leung et al. (2018);
Pedroza (2006))
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Modeling

Notations

@ age vector x 1= (x1, ..., Xn),
@ time vector t := (t1,..., tT)

@ constant force of mortality assumption and we denote this by
mx7t.

Pxts,t+s = Mx,t = My for0<s<1landxeN.

@ D, ;= No. of deaths, E, ; = central exposure
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Modeling

The Problem

Let the crude mortality rate be denoted as M, = %. Let,

yx,t = log(My ¢), the Lee-Carter model assumes that
yt:Oé—f-,BK?t—'-Et, Eg ~ N(O,]InO'g)

ke = ki1 + p+we,  we~ N(0,02)

Let the probability of death be denoted as Gy : = — log(1 — My ¢).
CBD Model propose to model the probability of death as,

IOg ( qx,f ) = /‘ﬂLt + I{27t(X — )_() + €X7t, €X7t ~ N(O, O'g)
1- qx,t

2B ) e
K2t 0> K2,t—1 wa,t wat
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Modeling

Mortality Rate over Ages for year 1970 Mortality Rate over Ages for year 1990
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Dynamic Linear Model - Estimation

Dynamic Linear Model

Natural Exponential Family: log(Pr(y|n)) =y "1 — b(n) + c(y)
Assuming that death rates D, ; follows a Poisson distribution

e*Ex,rmx.t(Exyth‘t)dx,r
do! :
|0g(Pr(Dx,t = dx,t|Ex,t7 mx,t)) = dx,t Iog(Ex,tmx,t) - Ex,tmx,t - Iog(dx,t!)

Pr(Dx,t = dx,t|Ex,t7 mx,t) =

If death rates Dy, follows a Binomial Distribution then,

Pr(Dxﬂt = dx,t

EXy dx x,t —dx
Ex,taqx,t) = <d :) qx_f(l — qx’t)E t—dxt
X,

q, Ex
log(Pr(Dx,e=d, :|Ex,t; Ay ¢)) = dx,t log (ﬁ) + Extlog (1 —aq,,) + log (d ’t>
— Hx,t X, t
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Dynamic Linear Model - Estimation

Non-Linear Mortality Model

Under Lee-Carter Poisson Model

e*Ex,tmx,t ( Ex,tmx,t)dx’t

(Dx,t‘Ex,tmx,t) ~ dx7t!

log(mx.t) = (ax + Bxkit) s
Kt = Kt—1 + p + we,

Under CBD Binomial Model,

Ext) do _
(Ol ~ (7)ot (1 )
X,

qx,t -
log | ———— | = —
g (1 — CIx,t) K1t + kot(x — X),

B b ) 2]
Kot 0> K2,t—1 wo ¢ wot
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Dynamic Linear Model - Estimation

Bayesian Non-Linear State-Space

Algorithm: We cast the mortality models in state-space form, and perform
MCMC sampling of the model parameters. In the Bayesian setting, our aim is
to conduct inference on the joint posterior density

7T(K/1:t-,—, ‘I’|y1:t7),
using Gibbs sampling (Geman and Geman, 1984),

7T(K/l:br, \I’|yl:t7-) X 7'l—(‘]?"“al:try_yl:tT) 71—("q/l:t-,-|\]?7_yl:t-,—) (2)

@ Initialize ¥ = ¥©
Q Fori=1,...,M,

@ sample k() from w(fql:tT|\I'("*1),y1:tT) - Extended Kalman
Filter |
@ sample ¥() from 7r(\Il|/<cg':1T,y1;tT) - MCMC
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Dynamic Linear Model - Estimation

Figure 1: Age 50 UK Figure 3: Age 80 AUS

Age 55 UK Figure 4. Age 85 AUS

14/22

Figure 2:



Bayesian Testing

Liability calculation

Let the survival rate of a person aged x surviving for the next t years be found
by,

t
Se(t) =[](1 = qerinsi) 3)
i=1
Assume now we are obligated to pay $1 to a person currently aged x for the
next T years. Let the price of a zero coupon bond which matures in t years be
denoted as P(0, t), we then have the liability for a $1 annuity to a person aged
x over T years to be,

L(T) = ip(o, £)S.(t)

T
LReallsed Z P 0 t SReallsed(t_)7

t=1

T
LI (T Z P(0, t)S«(t), Upper 99% Quantile for S,(t)
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Bayesian Testing

Lee-Carter Non-Linear and Linear Forecasts CBD Non-Linear and Linear Forecasts

N/

‘ Find S, (¢) under each approach ‘

v

Produce 99% upper bound of L,(T) denote as Lﬁ""“(T)

v

LE"""(T) < [Realised(T)

Ll;lpper(T) > [Realised(T)

0, for LRedlised(T) < LuPPer(T)

"Hit" Ix(T) = 17 for Lsealised(T) > LEPPeF(T)
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Bayesian Testing

Here we apply a 5-year forecast horizon and obtain lower and
upper bounds on L,(T) based on the Linear and Non-Linear
estimation methods. The LYPP*"(T), represents L, (T) calculated
at the 99% quantile of our mortality forecasts
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Bayesian Testing

Liability Bounds

Lee-Carter model

Country Age Bayesian Linear  Bayesian Non-Linear Realised Zyge(5)

60  (7.9589, 8.1067)  (7.9558,8.1125)  8.0761  (0,0)
AUS 65  (7.4510,7.9092)  (7.3982,7.8276)  7.7898  (0,0)
75  (6.2556, 6.5839)  (6.2647, 6.6106)  6.5976  (1,0)
60 (7.7743,7.8864)  (7.4003,7.5595)  7.8804  (0,0)
USA 65 (7.4023,7.5428)  (7.4003, 7.5595)  7.5768  (1,1)
75  (6.1483,6.3428)  (6.1582, 6.3647)  6.4138  (1,1)

CBD model
Country Age Bayesian Linear Bayesian Non-Linear Realised Z,ge(5)

60 (7.9639,8.1086)  (7.9695,8.1138)  8.0761  (0,0)
AUS 65  (7.5739,7.8202)  (7.5674,7.8261)  7.7898  (0,0)
75 (6.0574,6.7357)  (5.9730, 6.6861)  6.5976  (0,0)
60  (7.7947,7.9147)  (7.8104,7.9209)  7.8804  (0,0)
USA 65 (7.3881,7.5661)  (7.3937,7.5638)  7.5768 (1,1
75 (5.9729, 6.3445)  (5.9343,6.2868)  6.4160  (1,1)

18/22




Bayesian Testing

Backtesting VaR using Bayesian Decision Theory

Model 1: Null Hypothesis, 'hits’ occur with probability & = o™ = 0.01.
L(Z]e) = a™(1 — )" ™, (4)
where m represents the sample size and m; represents the number of hits.

Model 2: Alternative Hypothesis, 'hits’ occur with probability different from
0.01.

Given non-informative priors

1 if a =a”,
m(a) = .
Beta(0.5,0.5), if a # a”.

(a")™ (1 —a")" ™

BFo =
o B(mi 4+ 0.5, m + 0.5)

>1
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Bayesian Testing

Table of Results

Table 1: Bayes Factor under Bayesian Linear and Bayesian Non-Linear
methods

Bayes Factor

Bayesian Linear  Bayesian Non-Linear

Lee-Carter  8.85 x 107*¢ 2.01
CBD 1.02 x 1077 1.96
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Contributions

Major Contributions

@ Create a new Framework for backtesting Mortality models
tailored to longevity risk.
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Contributions

Major Contributions

@ Create a new Framework for backtesting Mortality models
tailored to longevity risk.

@ Cast two mortality models (LC and CBD) in non-linear
state-space form.

@ Compared the result to show that the non-linear state-space
form succeeds the linear case under our backtesting
framework.
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The End
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